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ABSTRACT

A general method for handling two-dimensional
potential problems involving cylindrical boundaries

configurations having n-fold symmetry around an axis,
with the main purpose of studying electric field pro-

such as are commonly used in power transmission line
technique.  Numerical results obtained for stranded
conductors are subjected to accuracy tests and compared
with results found in the literature, obtained by different
but equally accurate methods. Based on the potential
function representation afforded by this
several properties of stranded conductors, of impor-
tance to power transmission line engineering, ate

presented in tabular form and as a set of numerical
interpolation formulas, facilitating their use in digital
- computer programs.

RESUMO

Apresenta-se um método geral para o {ratainento de
problemas relativos 4 funcio potencial a duas dimensdes,
satisfazendo condigGes fronteira sobre superficies ci-
lindricas circulares. Faz-se a sua aplicagdo ao caso
particular de sistemas de condutores .que apresentam
simetria de ordem-n em torno de um eixo, tendo como
objectivo principal o estudo do campo ecléctrico na
.| vizinhanga da superficie de condutores geminados e
- entrangados, tal como s#o usados na téenica das linhas
de transmissio de energia. Os resultados numéricos
obtidos para condutores entrangados sdo criticados
sob o ponto de vista da precisfo que é possivel obter,
¢ s80 comparados com resultados publicados, obtidos
por métodos diferentes mas de nivel de precisio com-
pardvel. Com base na représentaciio da funciio po-
tencial proporcionada por este método, investigam-se
algumas propriedades dos condutores -entrangados,
importantes para a engenharia das linhas de trans-

is presented. An application is made to conductor.

perties in the vicinity of bundle and stranded conductors,”

method, -

investigated and the corresponding numerical results .

missdo de energia ¢ 0s correspondentes resultados
numéricos sfo apresentados sob a forma de tabelas ¢
também sob a forma de um conjunto de férmulas
numéricas de interpolacio, destinadas a facilitar o
seu uso em programas de cileulo digital.

I — INTRODUCTION

In the design of high i'oitage overhead power trans- |
mission lines, knowledge of maximum field intensities

. occuring at the surface of conductors is required in

order to predict-the inception of corona discharge and
allow estimates to be made of undesirable effects of
corona, such as, power loss, radio interference and
audible noise. -

The starting point for any investigation of these
problems consists in obtaining a’ solution of the po-
tential problem posed by the conducting boundaries
involved, sufficiently accurate in their immediate
vicinity to allow reliable information regarding surface
voltage pradients to be obtained.

As is well known, the requirements of ehv and dhv '
applications have led to the universal wse of bundle
conductors (fig. 1), for the phase conductors [1],
moreover whether single or as members of a bundle,
individual conductors are manufactured as stranded
cables (fig. 2), .presenting a nearly cylindrical, but
non-smooth surface, that must be taken into account
in maximum field intensity calculations.

Fortunately, both the bundle and the stranded
conductor configurations are geometrically quite si-
milar. Their transversal cross-sections consisting in a
set of circular boundaries, having their centers uni-

- formly distributed around a circle so that n-fold symme-

try around a cenfral axis results.

The method developed in the present paper is applic-
able without modification to. both problems, the only
difference being the number of terms in a series de-

~ (*) Publicagiio do LaboratSrio de Medidas Bléetricas do 1.8.7T.
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Fig. 1 — Regular bundle conductors.

velopment that have to be considered in order to
achieve a given accuracy. This number is a function of
the subconductor radius to interconductor distance
ratio, growing with the latter. The stranded conductor
problem having the larger ratio of the two, requires,

Fig. 2 -— The outer layer of a stranded conductor.

for a given accuracy, a larger number of terms than the
bundle conductor problem. _ :

In order to preserve symmetry, the system of con-
ductors under study will be assumed isolated in space,
thereby neglecting all proximity effects due to any
nearby conductors. Only the total amount of charge
per unit length of the conductor under study, and not
its spatial distribution, is made to depend on the geo-
metry and potentials of nearby conductors.  The
" errors deriving from this assumption will be acceptable
as long as the distances to nearby conductors remain
large compared to the transversal dimensions of the
conductor system under study.

. The present paper is by no means the first attempt
at dealing with these problems, a rich literature is
already available on the subject. However, to our
knowledge, the bundle and the stranded conductor
problems have always been treated separaiely.

Early contributions to bundle conductor theory are
to be found in [1] and [2], where references are made to
still earlier work. The approach taken by these authors is
the classical one of considering one line charge per
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- subconductor, and adjusting their position for a best

fit with the nearly cylindrical equipotential surfaces

.in the immediate vicinity of the line charges.

With the advent of digital computers, a more de-
tailed account of charge distribution becomes practical,
giving rise to more sophisticated approaches, such as,
the charge simulation method [3), the integral equation
method [4], or the. successive image method [5]

An early reference to the effecis of stranding is to
be found in [6]. Recent contributions to the theory of
the stranded conductor may be found in [7], [8] and .
[9]. These authors have in common the use of a truncated
series of inverse powers of the distance to the conductor
axis, as a basic representation for the potential function.
Titting of the function to the boundary yields the un-

" known coefficients. An approximate fit is obtained in

reference {7] by imposing an exact fit.on a finite set of
arbitrarily chosen points. In references [8] and [9] an
orthogonalization procedure is carried out in a finite
dimension subspace of the space of functions-over-the-
-boundary, the only difference being in the set of basis
functions used by their respective authors,

The method used in the present paper may be re-
garded as a refinement of the classical method cited

‘above in connection with references [1] and [2]. Instead

of a line charge only (monopole singularity), higher
order singularities (multipole singularities) are added
for each conductor present. By carrying the representa-
tion to sufficiently high order any desired accuracy
can be obtained. Like the classical method, it can be
used with axis-parallel cylindrical boundaries in any
configuration. For the bundle and stranded conductor
problems, with their high degree of symmetry, it be-
comes particularly simple to use, requiring much less

- computational effort than other methods of comparable
* ACCUTACY. o

2 — MULTIPOLE EXPANSIONS

Consider a line charge located at the origin of the
complex z-plane, with a strength of q units of charge
per unit of length. The corresponding ¢lectrostatic
field, for a medium of constant permittivity eq, may
be described by the complex potential function

Wo(2) = Ao In —12— @0
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The field described by (2.1} will be called a monopole
field.

Now consider instead 2p line charges, uniformly
spaced around a circle of radius p, having alternating
positive and negatwe signs, and all of the same strength
q (fig. 3). , - .

The complex potential function is now given by

Lt (rfz)
1—(rfz)?

where z = Zeit and r = pefep denotes the position
of any one of the p line charges of positive sign.

W, (z) = -2

21 eg

If we assume the charge distribution is now forced -

to concentrate at the origin by letting ¢ shrink to zero,
then using a power series expansion for W,(z) and
retaining only the leading term, we get

which can be taken as a sufficiently good approximation
when p<'<Z. To obtain a finite limit for the above

%@=Wi
. 0

expression, the charge stréngth ¢ is simultaneously
‘made to grow without bound, so that in the limit we
have -
. : Jop TR
W, (@) = A, [ Ezp ] (2.3)
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Flg 3 — Arrangement of line charges for a multipele of order-3.

where A, is a finite constant given by

" lim jp"
p—0

q—‘roo

= A,

T Eg

Expressfiron (2.3) déséri_bes a muitipole field of order-p.
It is useful to notice the relation,

l; L = b i . @ [lnwlm:l
.oz (p— 1 dzr Z

(2.4)

@2

showing that a close relationship exists, between the
multipole function of order-p and the p derivative
of the monopole function.

Superposition . of a monopole field with multipole
fields of all orders yields an expansion for the poientlal

function having the following form

Wz} =

p =1

ejop P
Ay In——-l— N A,,{ - J (2.5)

r

Talking the real part 11 order to obtain the actual
'polentlal function, :

V(Z,9) = Re { W(z)} =

> Apcos p(0— w)
=4 In—- + £
° Tz pgl zr

(2.6)

- and .giving a constant value to Z,-as would be the case
" for points on the surface of a cylinder with its axis

through the origin, it is immediately seen that (2.6)
represents a Fourier series development in 8 for the
values assumed by the potential function om that
same surface. By an appropriate choice of coefficients
Ap (p=0,1,2...), the expansion (2.5) may be readily
made to represent a potencial function assuming pres-
cribed vaJues over a cylindrical boundary.

3 — OFF-SET CYLINDRICAL BOUNDARIES

Instead of a cylindrical surface coaxial with the
multipole axis, we shall now consider a cylindrical
surface having an off-set axis (fig. 4). |

For the purpose, a new complex variable x is in-
troduced to replace z in (2.5) according to the rela-
tionship

X=z—z = Rej® (‘3.1)

As will be easily seen, an expansion of W{(z) in
increasing powers of variable x will lead fo a Fourier
series in 0, when its real part is taken, |x| being held
constant with a value equal to the cyljnder radius.
Briefly, a Taylor series expansion of W{(z) is required
around the point z = z'.

For convergence reasons, the multipole axis is
assumed to lic outside the cylinder which is equivalent
to require that |x| < |z'|.

Writing the series in the form

. 2 1 [dw
W(Z)+m2m'; m! { dzt o

Z e 2

Wz 4 x) = (3.2)

the coefficients, derived using (2.5), are found to be:

For the series constant term,

W() = An In—— + 3 Ap[ i ],, (3.3)
z z

p=1

For the m* power of x, - _
1 [ doW -~ Ly
] = ( ) Ao +
! dzm |, o o mzm

o) 4
X e C(p,m}[em

p o= 1

(3.4)
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Fig. 4 — Coaxil and off-set cylindrical surfaces.
where
—_ 1
Clp,my = 2= 1) (3.5)
(m—1)1 (p-— D!

4 — THE MULTIPOLE METHOD

Assume a potential function is required satisfying
prescribed boundary conditions on the surface of s
cylinders all with their axis parallel to some direction
i space.

The pdtennal function is to- apply -in the region of

space outside the cylinders, and may be thought as the
result of superposing contributions from a set of
siugularities one inside each cylinder and coinciding
in space with .its axis. Bach singularity involves in
principle a monopole and multipoles of all orders.

The potential function is therefore made to depend
on a set of coefficients Ape(p = 0,1,2...), (k = 1, 2,...5)
the first index denoting the multipole order and the
second the cylinder where it is located.

‘With the help of (2.5) and (3.2), expressions for the
Fourier coefficients of the potential function over each
boundary surface may be readily obtained in terms of
the unknown 4,r. Expansion (2.5) is to be uwsed for
the singularitics inside the cylinder under considera-
tion and expansion (3.2) for those outside.

- The boundary conditions io be imposed on the
potential function now require these Fourier coefficients
to assutne well defined values, leading immediately
to a set of linear equations in the unknown coefficients
Apk .

To come out with a finite numerical problem an

upper bound must be placed on index p, thereby im-
posing a maximum multipole order to be used in
finding a numerical approximation to the exact solution.

For the important special case of conducting bound-
aries, all Fourier cocfficients with the exception of the
constant terms of each series, must be set equal to zero
to insure constancy of the potential function over each

t < \i Re
N ) Multipole '

axis

Fig. 5 Stranded conducior geometry.

conductor. The constant terms are obviously to be set
equal to the potential value prescubcd for the corres-
ponding conductor.

Experience has shown that for moderate radius to
distance ratios, such as are found in connection with
bundle conductors, only a few maullipole terms are
required for adequate accuracy. This was to be ex-
pected, since the monopole approximation already
provides useful results for this type of problem.

On the other hand, the stranded conductor problem

1s typical for a larpge radius to distance ratio situation.

Indeed so large as to bring the conducting surfaces
into contact with each other. Here, a larger number of
terms (10 to 20) may be expected to be required for high
accuracy results. The computational requirements
remain however, even in this extreme situation, well
within practical bounds.




5—PROBLEMS WITH N-FOLD SYMMETRY

This type of symmetry results from having the
conductor axes uniformly spaced around a circle and
all with the same radivs. If there are s conductors
and the circle radius is taken as the umt of lengih,
the location of those axes may be denoted by

j2 b3 i .
Zg =g ¥ k=0,1,2, ...

s—1.

(5.1)

Both the regular bundle and the stranded conductor :

belong in this category.

Important simplifications become possible due to
symumetry. The set of unknown coeefficients Ay s
reduced to a set A, independent of the conductor index k.
The number of unknowns is thus reduced to the highest

Fig. 6 —— The outer radius of a stranded conductor.

multipole order to be considered in the approximation.
Correspondingly, boundary conditions need be imposed
on the surface of a single conductor only. The k=0
conductor shall be -used for this purpose, the off-set 2’
appearing in (3.2) becomes, for each conductor & # 0,

(5.2)

z = I_Zk

Symmetry also requires the spatial orientation of
all multipoles to be radial. Therefore the corresponding
angle «, appearing in (3.3} and (3.4) will be given by

2T B
otp == w;‘wwk .

(5.3)

To add up the contributions from the s—1 sin-
gulantles outside conductor k=0, use is made of
expansion (3.2) with the help of (3. 3) {3.4) and (3.5).
To effect the summation m k, the following results
are useful

Fe=1 1 . 1

In — =-ln - (5.4)
Ko — Zk
K( );_(__l)ms_l 7y '.__
* P,y = kle (1= z )y tm -
=[5 ++3)
51 - 2 5
_— L5

— T NPt m
k=1 | 2 sen k—
5

The total contribution®from the singularities ex-
ternal to the k =0 conductor then becomes

W (x) = Ag fn*+ 3 K20 4y +
p=1

-+ 2 1 Es(0,m) Ao + 2 Clp,m) Ks(p,m) Ap:l

me1

(5.6)

The contribution from the singularity mside the
k = 0 conductor is obtained by replacing z by x in
(2.5) and setting «, = 0. The result is

i R ] nt
=4 In —— + Am ama ‘
0 w > [x] (5.7)

W ()
: me= 1
- Adding up both contributions, the actual potential
function on the surface of conductor k = 0 is obtamed
by taking the real part of
Wix) =

We () + Wi (%) (5.8)

where the only complex quantity is the variable x itself.
Writing in polar coordinates,

the real part of the logarithm terms is independent
from 0, and the real part of the remaining terms is
simply obtained by replacement of the x powers accord-
ing to’

cos mib

Re{xm} = Rymcos ml  ; Re{x ™} =— !
. ’ : Ry
Extraéung the 6 independent terms from (5.6) and
(5.7 and demgnatmg by ¥V, the potential value common
to all conductors in the system, we have

Vo= Ay In + 2 K (p,0) 4, (5.9)
i pas
* the remaining terms are
[=2] m
Ry cos mb. [Ks ©,m) Ag + —T A +
el m c'2m
S Clpam) Ke(pom) Ap] .
p=1

Setting N as an upper bound on p, an approximation
to the expansion coefficients 4, may be obtained by
solving the linear set of N equations resulting from
requiring that the first N terms of the above expression
be made equal to zero. This 1s accomplished by setting
the expression in brackets equal to zero, giving

RZAW+EC@mm@m%W—&mm%

p=1
(5.10) -
m==1,2,3... N -
or, in a more compact form .
; .
2 Sopdp=COm 3 m=1,2,3, .. N (5.1

P




The elements of the coefficient matrix being given by

S’”IJ == C(p3m) KT (P:r”)‘_l_ Smp . (512)

2
RO m

A glance at (3.5) and (5.5) 1mmed1ately shows that
the first term in the above expression is symmetric
for an interchange of p with m. The second term is a
diagonal term and the matrix is therefore symmetric.

“The independent terms on the right side of equations
(5.12) coincide with the corresponding terms of (5.10)
and are thus seen to be proporiional to the monopole
coefficient Ay, -

O == — Ks(0,m) Ag . (5.13)

The whole set of unknown coefficients
Ay (p =1, 2, ... N), is in effect proportional to Ag
because equatlons (5.11) are linear. This is what one
would expect, given the connection of A4, with the
total charge ¢, per unit of conductor length,

gy

21 eS8

Ay = (5.14)
this coefficient shouldrin effect set the scale for the

remaining coefficients, and- through them, for the
whole ficld.

6 —THE SURFACE FIELD INTENSITY

Acceptmg potential expansions truncated at the Nv
order as sufficiently accurate approiimations to the
true potential function, a more compact form can be
- found for equations (5.6) and (5.7) by using (5.9) and
(5.10) to- eliminate sums over index p.

The complex potential then becomes

W(x) = We(x) + Wilx) =
1 N o xm ©m )
wm Vo — Ay In— 4+ e Am -
¢ ‘ . -.RO me1 M ROZm ] |
X Q x m.

m=1 i xm

Using polar coordinates for variable x, we get for the
actual potential function

= RE{W(X)} == Vo — Ao ]”—RR— +

0

VR,

: N Rom Rm : i
: Am — : cos ml. (6.2
+ rﬁgl [ Rm . Rom ] Rom ’ ( )

The surface electric field intensity will now bc,givén
by

Differentiating (6.2), an exp@:essmn for surface field
mtenmty as .a function of angle 8 in terms of the ex-
pansion coefficients A., can be obtained

Eg = L [Ao + T‘ 2m u}gw A cos m@] - (6.3)

m:l G

Using the above result, the average field intensity
is seen to be

This is the field intensity that would be observed if
charpe distributed itself uniformly around each sub-
conductor surface.
The actoal distribution is, however, nonuniform and
as can be seen from (6.2), its maximum value occurs
at 8=0.

Asadirect consequence of (6.3), the ratio of maximum
to average intensity is found to be

N
qux e ] + i 2 2m
Eav Ao ro= 1 Rum

A . (64

which i1s a fundamental result for dielcctrlc breakdown
considerations. )

Another important ratio, that can be established -
with the help of expression (6.3) for the field intensity,
is the square average to the average squared ratio, -

(E)ar Am T .

(Eav 2.

Its importance is to be found in connection with
the determination of power loss due to surface currents
flowing longitudinally under conditions of intense
skin effect. This will occur when, at sufficiently high
frequencies, the penetration depth becomes negligible
compared with the subconductor radius Ry. The
current density distribution under these conditions is
identical to the static surface charge distribution for
the same conductor geomelry, Charge density and
field inlensity being proportional, equation (6.5) re-
mains valid if electric field intensity is replaced on the
left side by surface current density under intense skin
effect conditions.

= L

=1

(6.5)

7—THE EQUIVALENT RADIUS CONCEPT

It is sometimes useful to relate a composite conductor
to 4 smooth cylindrical conductor which is its equi-
valent from the standpoint of some important physical
property. The equivalent radius of a composite con-
ductor relative to some property is then the radius of a
single cylindrical conductor, showing the same value
for that property as the composite conductor.

O {p=m, Smp =
pa=am, mp =0




7.1— THE EQUIVALENT RADIUS FOR THE
POTENTIAL DIFFERENCE Ry

At'very large distances, the potential function of a
composite conductor will approach that of a single

line charge of strength sq, as if all charge were found

concentrated on the central axis. The potential differ-
ence between a point at the surface and another point
at a very large distance r, will then be given by

= V,—s5 Ay ln—l——
¥

=]

AV = Vy—V,

according to formulation (2.1), that has been used

throughout for the potential function of a line charge.

On the other hand, for a cylindrical wire of radius
Ry, we would have for the same difference

AV =5 Ay -

Rv

Equality of potential difference requires
Ry = exp (— Vy/sdo)

thereby deﬁnmg an equivalent. radins Ryp.
Using equation (5.9) for the potential ¥, on the

.conductor surface, the equivalent radius may be written

Ry = (SRS exp ]j

T K(p,0) Ap]

Ao p=1

The first factor (sR,)'* in the above expression is
the so called «geometric mean radius» which is often
--uged-as an equivalent radius. As may be seen from the
second - factor,- a satisfactoiy approximation results
when the multipole terms. are relatively small. The
" geometric mean radius is thus appi:cab]e when the
radius to distance ratio is small as is usually the case
for bundie conductors

7.2 — EQUIVALENT RADIUS FOR THE MAXI
MUM ‘SURFACE FIELD INTENSITY Rgm

~ This may be obtained immediateiy in terms of the

maximum to average ratio given by (6.4). In effect, we
can write for the maximum field intensity

’ Ema A Em:.r

Emax = Fap L= 9 z

Ea Ro Eav

On the other hand, for a smooth cylindrical wire of
radius Rexm and carrying sq units of charge per unit
of length, the surface field intensity would be

Aq

REn

.E:S

Equating the above expressions, the equivalent

radius is seen to be given by

Eay

Srmax

.REM'"—“— & RO

7.3 — EQUIVALENT RADIUS FOR THE INTEGRAL
SQUARE FIELD INTENSITY Rps

The square field intensity integrated over the whole
conductor surface may be written,
AOZ (Ez)no .

F== 2w Ry (E%)gw =21 Ry 8
’ T Re? (Ea)?

For a smooth cylinder of radius Rgs carrying the
same total charge per unit length sg, one would write

instead 7 _
12
[ = 2n R,;S[ Aq J
' Res

Seuing the abowve resulls equal to each other, the
equivalent radiuvs Res may be expressed in terms of
the ratio given in (6.5) by

(Far)?

Res=0s R, .
(£

For compuied numerical values of the above quan-
tities relative to stranded conductors see below In-
section 3.2

8 -— NUMERICAL RESULTS

8.1 -~ ACCURACY

In order to test the practical feasibility of the method
and simultaneously obtain resulfs of interest for trans-
mission line engineering regarding stranded conductor
properties, a computer program was prepared to set
up and solve the lincar set of equations (5.11), for
specified values of N, s and R,.

It is important to notice that all quantities needed
to set up equations (5.11} are directly given in closed
form by formulas (3.5) and (5.5). This is in sharp
contrast with the methods of references {8] and [9]
which require the numerical evaluation of integrals,
one per coefficient, to solve. the stranded conductor
problem.

Because the stranded conductor problem with its
jarge radius to distance ratio places the highest de-
mands on the method in what regards accuracy, it
was the problem chosen to conduct the tests.

Setting N = 20, and choosing the monopole coeffi-
cient to be A4, = 1:0, the results obtained for the
multipole coefficients 4, are shown in Table-1 for
several s values of interest. In the stranded conductor
problem, the relative subconductor radius R, is not
an independent parameter but a function of s,

R, = sen (n/s)

To evaluate the rate of convergence obtained, atten-'
tion should be given to the coefficients in the Fourier
development (2.6). These are obtained by weighing
each A4, with a multiplying factor 1/Z7 . Using Z = R,
since Rq Is the shortest possible distance between z

- field point and a singularity, the results in Table-1




. TABLE 1

s=0

=12 =18 5=24 s=30
Rq = 0500000 Ro = 0.258819 Ro = 0.173648 Ro =-0.130526 Ro = 0.104528

AD " 1.00000E 00 1,00000E 00 1,00000E 00 1,000008 00 1,0000OE 00
Al 3.75394E — 01 2.12941E — 01 1465578 — 01 1.11489E — 01 R.9903GE — 02
A2 3.18976E — 02 1417428 — 02 7.23697E — 03 4.32003F — 03 2.86802F — 03
A3 —231657E — 03 4.08648F — 04 2257508 — 04 1195278 — 04 — 6.89562E — 05
Ad — 1.06409E — 03 — §.04520F - 05 —113813E — 05 - 247T790E — 06— 6.84087E — 07
AS 7.80006E - 05 — 107157 — 05 — 1.90668E — 06 485851E — 07 —1.62151E — 07
A6 e 6.10917E — 06 5.22201F — 07 —3.38621E . 08 _ {A4092B —08  — 5.12009F — 09
A7 - 646T83E — 05 2.27884E — 07 1.37684E — 08 1.56259E — 09 - 2 71558E — 10
AB — 441289 — 06 2.067205 — 09 1.06379E — 09 1 49768E — 10 2.83017E — 11

A9 7.87191E - 07 - 5.04616E — 09 . §.55236E — 11 - 2.25826E — 12 1.07613E — 13
A10 3.42423E — 07 . 2.81030E — 10 — 158650E — 11 _1025T2F —12  — 1.0877TSE— 13
All 1O4T9E—07  1.19064E — 10 2.64820E — 13 — 279027E — 14— 4.453T4E — 15
Al2  — 2.43488E— 08 1.19717E — 11 2.06243E — 13 6.00380E — 15 3.26694E — 16
A13 1.37381E — 08 — 3.00203E — 12 5.12406E — 15 4330408 — 16 — 3.191S3E — 17
A4 1.02386B4 09 — 4388108 — 13 __253042E— 15 2914538 —17  — 5.19205E — 19"
A15 — 1.68997E — 09 807663 - 14 — 1.65978E — 16 - 441921E —18  — 1.76160E ~ 19
Al6 - 1.10115E — 10 1.56631E — 14 2.99549E — 17 799128E -—20  — 2875265 — 21
A17 1.88328E — 10 - 231952E — 15 3.51354E — 18 3.05614E — 20 B.48242F — 22
Al8 — 4154808 — 11 — 5700948 — 16 — 332700E — 19 6421338 — 22 . A417481E—23
A19 — 1.80785E— 11 _ 7242858 — 17 — 6.76582E — 20 3348938 -— 22— 3.58728E— 24

- A0 B.58738E — 12 216110E — 17 337538 — 21 1.64532E-—23 - 3.52834E—25

Table 1 — Multipole expansion coefficients for stranded conduciors.

show that, as the order increases, the successive mul-
tipole contributions decrease in relative importance,
“the last terms affecling only the 5% significant digit.
The 20 multipole terms being considered should the-
refore suffice for high precision results in the stranded
conductor problem. This conclusion is substantially
independent from the number of strands being con-
sidered, as can be seen from the data in Table-1.

A Thighly sensitive test of accuracy may now be
carried out by computing, vsing the multipole coeffi-
cients in Table-l, the potential, the radial and the
tangential components of the electric field over the
conducting boundary. The results for s==30 are
shown in Table-2. A good fit requires comstant po-
tential and zero tangential field. Furthermore, the
radial field should become zero beyond the point of
contact of the strands, since the cavity bounded by the

TABLE 2
5 =30 Ry = 0.104528 Ap =10
; -
0 v, , Ep Ey
0,0 — 261316 37,8545 0.0000
102 - —261316 34.7211 - 0.0014 -
- 384 — 261315 . 25.2085 — 0.0024
57.6 —2.61314 10.4539 — 00023
76.8 —2.61313 03467 — 0.0025
100.0 — 261316 — 0.0003 — 0.0035
120.0 e 261315 0.0010 — 0.0009
140.0 o 261315 0.0007 0.0003
160.0 — 261315 — 0.0001 0.0003
186.0 —2.61315 - 0.0004 0.0000

Table 2 — Surface potential and field components.
See fig. 5.

conducting surfaces of the strands, fooking radially
inwards, should be free of any fields.

As far as the electric field is concerned, and relative
to its maximum value, the results in Table-2 meet the
above requirements to better than 1-partin 10 thousand.

The significance of potential function errors may
be obtained by dividing them by the radial field in-
tensity and interpreting the result as a shift between
the computed equipotential surface and the actual
conductor surface. These shifts are negligible over the
whole surface down to the points of contact 0 = 96°.

Finally in Table-3 results obtained by the multipole
method are compared to results found in reference {3)
for the same problem. To adapt to the mode of pre-
sentation used in reference [8], it is only necessary 1o
multiply. the results found for Eg, such as those In
Table-2, by an appropriate constant @. The results
agree to the 5% decimal place, except near the point
of contact where, as the authors of reference {8] point
out, their method is expected to fail. '

From the evidence presented above the conclusion
can be reached that the multipole method may be
used with. confidence to solve the stranded conductor
problem, and with greater reason the bundle conductor
problem too, comparing favourably with other possible
methods while requiring a very modest computational
effort 3, ' :

(2) See Apendix 1.

() All mumerical vesults in this paper hdve been obtained using a
desk type programmable calculator Tektronix model Tek-31
with 12 decimal digit mantissa.




TABLE 3

5= 30 Er Vem-1f1-

ae This paper Ref. 8]

0.0 0.10070] 0.100706

96 0.098635 0.098630
10.6 0.092365 0.082370
28.8 0.081849 0.081846
384 0.067060 C.067060
48.0 0.048449 0.048452
57.6 0.027810 0.027803
672 0.009739 ~ 0.009750
76.8 0.000922 0.000911
86.4 0.000002 0.000007
895.0 0.000000 ¢.000230

- Table 3 — Comparison aof field intensity distributions.
See Apendix I for details of conversion to the mode of
presentation used In reference [8).

TABLE 4
s Ry Rppr R
2 0.785398 0.636614 0.750000
4 0.906481 0.700248 0.854211
8 0.954243 0.713573 0.890572
12 0.969515 0.715829 0901312
18 . 0979648 0.716986 0.908166 .
24 0.984717 0717386 0.911508
30 0.987762 0.717547 0.913488
0.717759 0921227

0. 1.000000

Table 4 — Equivalent radii of siranded conductors, the outer radius
being taken as uniry.
See fig. 7.

8.2 — STRANDED CONDUCTOR EQUIVALENT
RADIT

Using the expressions derived in section 7., the
equivalent radii may be easily computed from the
multipole coefficients 4, found for each strand num-
ber 5. The results appear in Table-4 and may be seen
plotted in fig. 7. The attention of the reader is called
to the fact that the owter radius R, .of the stranded con-
ductor has been taken as unity.

To facilitate further use of these results in digital
computer programs, interpolation formulas of sufficient
accuracy were developed which are usable for s » 2,
with the absolute errors as indicated below.

1) For the potential difference:

Ry =] a— - R,
i bys? 4 bys - by

a = 10 Errors:

bo = 27104877  epmex = — 1.9F —4 for s =3
b, = 04811760

b, = 24847182 & -< . 2.6E-—6 for 5 = 8

2) For the maximum field inténsity:

- 1

Reyp= 1| 2a— e

R B byst o bys 4 by
a = 0.717760 " Errors: .
by =  7.94105F — 2 Emax = 3.2E ~4 for s = 3
by = 272957 e < 64E 35 for s 18
by = 3.79121
by = — 6.81212

3) For the integral square field intensity:

Rgs = [a — : R
bos® + bys + by

a = 0.92122679 Errors:

b, =  4.3856939 :

by = —2.3071869  emexr = 4.0E — 5 for 5 =3
b, = — 1.2479854 ¢

<]2E—06for s = 6

The reader may have noticed that for each radius, a
precise limiting value has been given above, correspond-
ing to a conductor with an infinite number of strands.

1.0

0.9

0.6

0.7+

0.6

=
ot o

T T T T
8 16 24 3z 5

Fig. 7 — Equivalent radii of stranded conductors, the outer radius
being taken as unity. See fig. 6. GMR is the «geomelric
mean radiush, -

These limiting values were obtained by solving the .
electric field problem of a plane grating of cylindrical
wires thick enough to touch one another, as the strands
do in a stranded conductor. The plane grating provides
the proper description of the local sifuation on a
stranded conductor surface when the distance between
consecutive strands becomes, in the limit, much smaller
than the conductor radius.

The plane grating problem has been solved usmg
the multipole method.




8.3 — ELECTRIC FIELD INTENSITY DISTRI-
BUTION AROQUND A STRAND

‘Making use of equation (6.3), the field intensity may
be readily obtained as a function of 8, once the 4, are
known. ‘ .

A family of curves obtained by varying the strand
number s are plotted in fig. 8. Unity on the ordinate
axis rvepresents the field strength at the surface of a
smooth cylinder having a radius equal to the outer
radius R, of the stranded conductor and bearing the
same charge per umit length.

1.0 <

05

0

T T v

0 30 60 90 120 150 ¢’

Fig. 8 -— Field intensity distribution. Unit  intensity represents
field on a smooth cylinder of radius R, , see fig. 6, bear-
ing the same charge.

The maximum field intensity occurs at the tip of the
strand (O = 0) and its value varies little with the strand
number s. This fact was already patent in the flatness
_of the Rgar curve that can be observed in fig. 7. Several
authors, [6] and [7], have pointed out that stranding
entails an increase of about 40 % in maximum field
intensity for large s values. The exact limiting value
is 39.3 %.

9.-— CONCLUSIONS

Potential problems involving cylindrical boundarics
have been found capable of an efficient solution to a
high degree of accuracy through the use of the multipole
method. B

‘The method was successfully applied to the stranded
conductor problem which, being an extreme case with
a large conductor radius to distance ratio, may be
taken as a severe-fest on its range -of applications.

The numerical results that have been obtained for the
stranded conductor configuration confirm and under
certain particular aspects improve published results
obtained by different authors, using other methods,

10

Properties of stranded conductors, important for
power transmission Jine engineering, have been ex-
pressed using the equivalent radius concept and the

_latter have been computed as a function of strand

number. Interpolation formulas, depending on a few

Fig. 9 — Coaxial arrangement used in reference [8].

parameters only, were developed to facilitate use of
these results in digital computer programs.

APENDIX 1|

In reference [8], numerical results are computed on -
the basis of a coaxial arrangement having the stranded
conductor under study as the center conductor (fig. 9).
The corresponding monopole coefficient will then be
given by

AO = q/2'ﬂ: 50 = C(Vl — Vz)/zTEEOS
where the capacitance per unit length C is to be found
using

C = 2ne,fIn{Rr|RERY)

The radius R, of the circle passing through the strand
cross section centers is given in terms of R, by

Re = Rgf{l - sen (n/s)]

To enable a comparison of values such as those
given in Table-2 of this paper that were obtained for
Ay =10, R, = 1.0 to the corresponding values in
reference [8], a multiplying constant A4,/R. is to be
applied to the results of Table-2, where 4, and R,
result from entering the values used in reference [8]
in the above expressions. These are

RefRr = 1000
Vl e Vz == I V

Re=2cm
s = 30

from Table-4 we further take for s = 30, Ry = 0.987762,
then the appropriate multiplier is

AoJRc == 2.66021E — 3. Vem™
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